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EIGENVALUE APPROXIMATION BY A MIXED METHOD 
FOR RESONANT INHOMOGENEOUS CAVITIES 

WITH METALLIC BOUNDARIES 

VINCENT LEVILLAIN 

ABSTRACT. For an inhomogeneous cavity bounded by a perfect conductor, we 
prove that the approximation of the eigenvalues for the Maxwell problem leads 
to a second-order rate of convergence when using mixed finite elements. If 
the cavity has a disconnected boundary, the problem has null eigenvalues. We 
verify the existence of null eigenvalues for the approximate problem. They do 
not mix with the others that still converge at the same rate. 

INTRODUCTION 

The approximation of eigenvalues involves problems that are of great inter- 
est. We mention, for example, the works of Osborn [10], Mercier, Osborn, 
Rappaz, and Raviart [8], and Brezzi and Raviart [5]. More specifically, mixed 
methods are used for this purpose (see Ishihara [7]). The aim of this paper is 
to apply results of Mercier, Osborn, Rappaz, and Raviart [8] on eigenvalues, 
and of Nedelec [9] on mixed finite elements, to prove a second-order rate of 
convergence for the harmonic Maxwell equation. 

Another part of the paper concerns cavities with disconnected boundaries. 
The operator of the problem is then no longer elliptic. Work on this kind of 
geometry can be found in Bossavit [3], and in Bendali, Dominguez, and Gallic 
[2]. 

First, we deal with a connected boundary to get an elliptic problem, which 
is necessary in order to use known results. Then we extend the work to discon- 
nected boundaries and prove that the zero eigenvalues of the curl operator have 
approximate equivalents that do not mix with the other converging eigenvalues. 

To conclude, we show numerical experiments on a cube, for which eigenval- 
ues are known analytically. 

1. THE CONTINUOUS PROBLEM 

Let Q be a bounded cavity, with a connected boundary, filled with an inho- 
mogeneous medium. We consider the following problem: 
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I Find (E, H) E H(curl, Q) satisfying 
curlE + iwjH = 0, 
curl H - ioE = 0, 
div(MH) =0 He nIOU = 0, 
div(eE) =O, E x nIQ = O, 

where e and ki are strictly positive bounded real functions. Let E' be a test 
function belonging to H(Curl, Q), satisfying E' x n = 0 on the boundary aQ . 
Then applying the Green formula 

jcurlH.E= jH*curlE-j (E x n) * H 

to the first system, we obtain the variationally posed problem: 

f - I curl E * curlE - _02 jeE E' = 0. 

Given two regular complex functions e and ,L, with strictly positive bounded 
real parts, this is an eigenvalue problem in a variational form: 

FindEEH(curl42),ExnIOU=O, diveE=O,.iER 

(P) j such that VE' E H(curl, f) with E' x n = 0, 

JU ya# curl E * curl E=iAQ JsE *E 

Therefore, we introduce the following spaces: 

W = Ho' (K2) 
X= {EeL2(n)3 , curlE eL2(Q)3, Ex nIOU=O}, 
H = L2(f2)3 

and the continuous bilinear forms 

a:XxX X C 

(E, E')l-jrot E * rotE + jeE*E 

b: X x W C 

(E, q) - |E j grad q, 

r:HxH ) C 

(E, E') - 2 *eE 

that satisfy the properties: 
H1: r is continuous and bounded on H x H, 
H2: b(v, q) = 0 for every v in X implies q = O. 

(Simply consider v = grad q that belongs to X: since e and y have strictly 
positive bounded real parts, we apply the Poincare inequality to conclude that 
gradq = 0 implies q = 0 in Q .) 
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Let us now introduce the following problem: with g given in H, find 
(E, p) E X x W such that, V(E', p') E X x W: 

(II) J a(E, E') + b(E', p) = r(g, E'), 
b(E, p') = 0. 

We have 

Lemma 1.1. For each g given in H, there is a unique solution (E, p) of prob- 
lem (II) that depends continuously on g. As g belongs to H, we have the higher 
regularity: 

IIEIIH2 + IIPIIHJ < C11g9IL2. 

Furthermore, if div E E L2, then p belongs to H2, and we have 

IIEIIH2 + IIPIIH2 <? C(IgIL2 + ||divgIIL2). 

Proof. The bilinear form a is V-elliptic: it is equivalent to the H(curl) norm, 
since E and ,t have positive real parts. We have the following property: 

H3: b satisfies the Brezzi-Babu'ska condition (cf. Brezzi [4]) 

inf sup b(E, q)j >O 
ljqjj #? IIE11340 JJEJJ * Ijq 11 

Indeed, consider u = grad(q); since the seminorm of the gradient is equivalent 
to the norm, the inequality is verified. Brezzi's result [4] now gives us the 
existence and uniqueness of (u, p) . The first regularity inequality is a classical 
result that can be found in Agmon, Douglis, and Nirenberg [1]. Finally, if 
div g E L2, then Ap E L2, and so p E H2. 0 

2. THE APPROXIMATE PROBLEM 

We define a triangulation of the domain Ql, with tetrahedra, and to avoid 
the problem of volume and surface approximation, we will suppose that Q is 
a polyhedral open set. We define the spaces 

Xh = {E E H(rot, Q), VK E 3h, EIK(r) = &+ /5 x r E x n/+ = 

Wh = {q E Ho (Q), Iqk E P }, 

Vh = {Eh E Xh, b(Eh, qh) = ?, Vqh E Wh}. 

The system that is numerically solved is 

E Find E E Xh and A E C such that VE' E Xh 

(E) jff j,- I curl E * curl ET = A f)eE * E4. 

We have introduced Vh in order to be sure that the solutions of the eigen- 
problem associated with (II.a) below are also solutions of (E). Therefore, we 
associate the following approximate problem: 

With g given in L2, find (Eh, Ph) in Xh x Wh such that for all (Eh, Ph) 
in Xh, Wh we have 

(I.a) a(Eb, Eh) + T(Eh, Ph) = 
r0(g Eh). 

b(Eh ,p') = 0 
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We now have 

Lemma 2.1. If q is an element of Wh, then grad(q) belongs to Xh. 

Proof. Nedelec [9] E 

The approximate problem satisfies properties Hi, H2, and H3: indeed, the 
bilinear form a is Vh-elliptic because Vh is contained in H(curl). Further- 
more, Lemma 2.1 implies that the Brezzi-Babuska condition and property H2 
hold. 0 

This leads to 

Lemma 2.2. For each g given in H, there is a unique solution (Eh, Ph) in 
Xh x Wh of problem (II.a) that depends continuously on g. The continuity 
constants do not depend on h. 

Remark. A part of the set of eigenvectors given by the variational formulation 
(E) is composed of curl-free functions that do not belong to Vh and that are 
exactly the gradients of Wh functions, and we know the dimension of this 
subspace (Ne, number of vertices inside Q). They are associated with N, 
zero eigenvalues. We will prove that each of the other eigenvalues converges 
toward the corresponding eigenvalue of the continuous problem (P), and we 
will establish the rate of convergence. 

3. RATE OF CONVERGENCE 

Taking into account the preceding paragraphs, we introduce the following 
definitions: 

A:H ,X 
g E, 

B: H-- W 
g +p, 

where (E, p) is the solution of (II) for a given g, and 

Ah: H Xh 

g ' Eh, 
Bh: H Wh 

g ' Ph. 

where (Eh, Ph) is the solution of (II.a) for a given g. We also introduce the 
dual operators A*, B*, A*, Bh*, by means of the solutions of the two problems: 

II* a(v, A*g) + b(v, B*g) = r(v, g) Vv E X, 
(11*) b(A*,gq)=O VqeW, 

a(Vh , Ahg) + b(Vh , Bg) = r(Vh, g) VVh E Xh, 

(Ih) b(A*, gq)=O VqhEWh 

These "starred" operators satisfy the same regularity results as A, B. 
We also assume that as h decreases: 
(H): supk(diam (K)) < cinfK(diam (K)), in order to use the following the- 

orem. 
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Theorem 3.1. Under hypothesis (H), and if the solutions are sufficiently regular, 
there exists c > 0 such that for all h 

IjAg - Ahg9X + IBg - Bhgll < c * (IlAgIIH2 + IBgIlH2). 
Proof. Nedelec [9] and Brezzi [4]. 0 

We define a norm for the operators, 

jjAIlxy = Sup I-AgIIy 
gEX,g4O IIgIIx 

We recall some results about the eigenproblem: A is a compact operator from 
L2 in L2, so its spectrum consists of a countable set of complex numbers, and 
each nonzero number is an isolated eigenvalue. Let yu be a nonzero eigenvalue; 
then there exists no such that 

Ker(A - aIJ)nl-1 : Ker(A - aJI)a = Ker(A - aj)n+l+ 
Set Ea = Ker(A - aI)fla , with dim Ea = m the algebraic multiplicity of a. We 
verify that a is an eigenvalue of A* with the same multiplicity, and we let Ea* 
be the set of the associated generalized eigenvectors. 

Another result that we need is a theorem proved by Mercier, Osborn, Rappaz, 
and Raviart [8]. A version adapted to our problem is 

Theorem 3.2. Under the hypotheses Hi, H2, and H3 for both the continuous 
and the approximate problems, and assuming both lim I IA - Ah I IHH = 0 and the 
continuous dependence of Eh, E, Ph, P with respect to g, we have the following. 
Let a be a nonzero eigenvalue ofA with multiplicity m; then for h small enough, 
exactly m eigenvalues of Ah converge to a. Furthermore, let I? = 1/a and 
flih = /ai, h; then there exists Cfp such that 

1 |4 E flj h l< Cp l (II(A - A)E.IIHX *I I(A* - A*)Ea IHX 

+ I(A* - A*)E* IIHX II(B - Bh)EIIHW 

+ II(A - Ah)E IIHX II(B* - B*)E* IIHW) 
Proof. Mercier, Osborn, Rappaz, and Raviart [8]. D 

In order to prove our main result, we need the following lemma. 

Lemma 3.3. There holds limhso | IA - AhIIHH = 0. 
Proof. Let g be given in L2, IgII = 1. If div g is in L2, we know that 
lim IlAg - AhgllHH = 0, but not in the general case. 

Let e > 0; since Ag belongs to H2 and satisfies b(Ag, q) = 0 for all q, 
we know that there exists h2 such that for all h < h2, there exists Wh E Xh 

such that e 
b(Wh, qh)=O Vqh E Wh, I |Ag-WhIlX < ?- 

We have 
a(Ahg - Wh, Ahg - Wh) 

= -a(wh, Ahg - Wh) + a(Ahg, Ahg - Wh) 

= -a(wh, Ahg - Wh) + a(Ag, Ahg -Wh) 

+ b(Asg-wh, Bg)-b (Ahg-wh, Bhg) 
= a(Ag-wh, Ahg-wh) + b(Ahg-wh, Bg-Bhg), 
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and also b(wh, qh) = 0 and b(Ahg, qh) = 0 for all qh in Wh, so we can 
replace Bh g with any qh in Wh. Since a is elliptic, continuous, and b is 
continuous, we have 

JAhg - Wh112 < c(IjAg - WhJ|wJJAhg - WhIIW + JIAhg - WhIJOIJBg - qhlll). 

Since Bg is in HI , there exists 0 in H2 such that 

IJBg - q111 < 6 ' 

using the dense inclusion of H2 in HI, and we can fix h1 > 0 such that 

Vh < hi, 3 qh E Why 110 -qhII1 < 6 

using the interpolation property of the H2 elements by Wh. So, 

IJBg-q IJJ <6 

and finally 

3h3 , Vh < h3, |JAhg - Wh||W < 2ce 

JIAg-AhgIIw < (2c+ 1)e 
3 

Therefore, 
lim jAg - AhgIIw = 0 

Since the unity sphere of L2 is a compact set, we finally have 

lim IIA-AhIIHX = 0, 
h--+O 

which is more than we need. 0 

We can finally prove the following theorem. 

Theorem 3.4. Let A be an eigenvalue for problem (P) with algebraic multiplicity 
m. Then for h small enough, m eigenvalues i, h of the approximate problem 
(E) converge towards A and there exists cA such that 

A n Z 'j,h ? cA -h. m <j<m 

The eigenvalues of (E) that do not converge towards an eigenvalue of (P) are zero 
and their number is Ns, the dimension of Wh. 
Proof. We first prove that elements E of E, belong to H2. Such an E satisfies 

A((A - aI)'--E) = av(A - aI)n-lE 

so ((A - ajI)n--E) belongs to H2, since A goes from L2 to H2. We repeat 
the same process to conclude that E e H2 and div E e L2. Then we have 

IIAE - AhElix + JIBE - BhEllw < c * h * (IIAEII2 + IIBEII2) 
< c * h * (IIEIJo + Ildiv E11o). 
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Since dim E, is finite, the H(div) norm and L2 norm are equivalent, so we 
have 

II(A - Ah)E.)IIHX + II(B - Bh)E.I IHW< ca * h. 
The same result holds for A*, B*. 

The eigenvalues A of (P) (resp. (E)) can be written as (2 - a)/a, where a 
is an eigenvalue of A (resp. (Ah)). Applying the theorem to (II)-(II.a), we 
translate the inequality to find the result for (P)-(E). The gradients of Wh 's 
functions are eigenvectors of the problem (E) associated with the zero eigen- 
value, but they have no meaning for the continuous problem, since they are not 
divergence-free. o 
Remark. We notice that these parasitic eigenvalues do not mix with our ap- 
proximate ones; this is the advantage of the mixed method, which does not 
introduce any uncontrollable eigenvalue into the set. The existence of parasitic 
values is common when using conforming finite elements; such eigenvalues are 
often called phenomena of parasite modes. 

4. DISCONNECTED BOUNDARIES 

Now we will deal with the presence of kernels: when the boundary is not 
connected, there exist functions in V that are curl-free. We want to study their 
approximate analogues more precisely. 

We consider a polyhedral open set Q, bounded by 

ao=Fo+ E vi. 
i=1.. p 

Here, Fo is the boundary of the unbounded component of R3_-J. The Fj, i = 

1, ... , p, are the other connected components. This is the case when a cavity 
has metallic kernels inside. The space of curl-free functions such that div eE = 
0, denoted by Hn, is no longer reduced to the element E = 0. Specifically, we 
have the following 

Lemma 4.1. The dimension of H, is exactly p. 
Proof. In Bendali, Dominguez, and Gallic [2], we find the proof of this result 
and a construction of a basis in the case of the Laplacian (i.e., e = 1). We 
adapt easily their steps: to each kernel i, we associate qj, the solution of the 
following problem: 

qj = 0 n Fo, 
dive grad ~ qi= nFQ. 

t~ ~ q i=6i~j on Fj. 
Then grad qj belongs to Hn, and (grad qj, i = 1, . .. , p) forms a basis of this 
space. 0 

We now introduce the new space 

W= {q E Hl(Q), qjr0 = 0, qlr, - ci} 

The space X is the same as before, except for the definition of the boundary, 
which now includes the boundaries of the kernels. As Fj is a level surface 
of q, grad q is orthogonal to Fj>, and thus belongs to X. We consider the 
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same bilinear forms a, b, r as before for the saddle-point formulation of the 
problem: a is elliptic on V; the Brezzi-Babuska condition is still satisfied, 
because the Poincare inequality is still true for functions which are zero on part 
of the boundary. The property (b(v, q) = 0, Vv E X =* q = 0) also holds, 
since grad q belongs to X and Poincare's inequality implies q = 0. 

The saddle-point continuous formulation can be treated as in ?2, and we 
have to add a zero eigenvalue for each metallic kernel in order to find the whole 
set of solutions for the problem (P). 

For the approximate formulation, we need to change a few details. We define 
Wh as we did W, with q constant on each Fi. And Xh is also defined as 
in ?2. This definition implies grad q belongs to Xh, for then grad q x n = 0 
on each Fi. Thus, we find the same properties satisfied by a, b, r as for the 
continuous and approximate formulations in the case of a connected boundary: 
the nonzero eigenvalues converge with second-order precision, since we can 
apply the same theorems, with a small modification in the proof of Nedelec [9] 
owing to the boundary condition no longer being qlr, = ci. 

The gradients of HO -functions of Wh generate N, zero eigenvalues, and we 
still have to study the approximate analogues of the curl-free functions in V. 

Theorem 4.2. Let NC be the number of metallic kernels inside the cavity. Then 
for h small enough there are exactly N, + NC zero eigenvalues for the approx- 
imate problem (E). Since grad(Wh) is not included in V, N, eigenvectors are 
not in V. The N, associated eigenvalues are meaningless for the continuous 
problem (P). The NC other zero eigenvalues are the numerical equivalents of 
the NC zero eigenvalues of the problem (P), and there is no need to study their 
convergence rates. 
Proof. Let rJ qi be the approximation of qi in Wh . Then HI qi is curl-free (it 
is a gradient); furthermore, it is in Xh, and it does not belong to grad fl(HO,) . 
Indeed, suppose grad HJ qi = grad p with p in Ho; then grad(rJ qi - p) = 0 . 
Let M be a vertex on Fo and N a vertex on 1i; then 

0 grad (fqi u-p) * ds 

= (fn qi - p (N) - (JHJqi - p (M) = (JJqi) (N) = 1, 

which makes no sense. This implies grad rJ qi has a projection on V which is 
not null and is curl-free (the difference between two gradients). For each Fi, we 
have constructed an eigenvector for the approximate problem associated with 
the zero eigenvalue. E 

In short, we have 

Theorem 4.3. Let NC be the number of metallic kernels inside the cavity, and let 
N, be the number of vertices of the triangulation inside. The eigenvalues of the 
approximate problem (E) can be divided into three sets 

(1) N, zero eigenvalues not corresponding to the continuous problem (P), since 
they are not divergence-free. (They are introduced by the finite element space. 
But we know their number, so we can easily eliminate them.) 

(2) NC zero eigenvalues corresponding exactly to the NC zero eigenvalues 
of (P). 
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(3) N nonzero eigenvalues (N = dim(Xh) - N, - Nc) that converge with 
second-order rate toward the nonzero eigenvalues of (P). 

5. NUMERICAL EXPERIMENTS 

To illustrate our theory, we consider a cubic cavity, L = 25 centimeters long, 
filled with a homogeneous medium e = = 1 . In this case, the eigenvalues are 
easy to calculate. For each triplet (m, n, p) in N x N x N, of which at least 
two are positive integers, we have the eigenvalue 

k2= (7r) (22 + n2 +p2). 

If the three integers are positive, the multiplicity of this eigenvalue associated 
with the triplet is two. Otherwise, the multiplicity is one, but an eigenvalue can 
be generated by more than one triplet. 

One problem caused by the existence of zero eigenvalues in the approximate 
problem is the calculation of the first eigenvalues. A power method cannot be 
used, since the kernel is not empty, and we have to calculate the whole set of 
eigenvalues, which takes time. 

In order to point out the decrease of the eigenvalues, we use four different 
meshes: first, 3 vertices in each direction, then 4, 5, 6. For each simulation, we 
erase N, (= 1, 4, 27, 125) zero eigenvalues in the approximate spectrum that 
come from the mixed elements. Then we trace the decrease of the first nineteen 
eigenvalues, h = L/2, ... , L/5. In order to facilitate the interpretation of 
these curves, we trace a reference curve y = a * x - 2, and we use logarithmic 
scales. We can see the global tendency of decreasing with second-order rate. 

l I ogq( e g qe nvol1 ( h) e i q e nv(o n ol q )) I 

2. 1. 

1. 1 _ _ _ _ _ _M 

01 -\, 

0 . .. -- 0.40 .- ------ -....:... 

0.3 0. 4 0. 6 0. 7 
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6. CONCLUSION 

We have selected polyhedral open sets to prevent the long calculation arising 
from the approximation of the set, and to apply easily the results of Nedelec [9]. 
But more recent work by Dubois [6] shows that the norms IIA - Ah 1I, JlB - Bh 11 
also decrease with first-order rate when the boundary is regular enough and when 
curved finite elements are used. Thanks to this result, our study still holds when 
the open set is not polyhedral. 

The main advantage of using mixed finite elements is to avoid the mixing 
of eigenvalues, a disadvantage of conforming finite elements. We find the ana- 
logues of the zero eigenvalues of the continuous problem by a subtraction: the 
number of zero eigenvalues minus the number of vertices inside the approximate 
set. 

Finally, the convergence occurs with a second-order rate for the nonzero 
eigenvalues, and the convergence is trivial for the zero eigenvalues, when the 
boundary is not connected. 
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